基于单臂路由的公司网络搭建

1. 项目背景

Jan16 公司的财务部和技术部有多台计算机,它们使用1台二层交换机进行互联,为方便管理和隔离广播,划分了 VLAN10 和 VLAN20。现因业务需要,两部门之间需实现相互通信,项目拓扑如图1所示,具体要求如下:

- (1) 公司将使用一台路由器连接交换机,并通过 R1 的单臂路由功能实现两个部门间 的相互通信;
- (2) 计算机和路由器的 IP 与接口信息如拓扑所示。

图1网络拓扑图

2. 项目规划设计

财务部和技术部分别属于 VLAN10 和 VLAN20,使用 192.168.1.0/24 和 192.168.2.0/24 网段。二层交换机的 VLAN 之间是无法通信,可以通过增加一台路由器并配置相应 VLAN 子接口的方式,实现 VLAN 间的通信。现需在 R1 创建子接口并绑定到相应的 VLAN, VLAN 内部的计算机配置网关指向子接口的 IP 地址即可。同时,R1 和 SW1 之间的通道需要传输多个 VLAN 的数据,故需配置为 Trunk 模式。

具体配置步骤如下:

- (1) 配置交换机接口
- (2) 路由器单臂路由的配置
- (3) 配置各计算机的 IP 地址

具体规划如下表:

表1 IP 地址规划表

设备	接口	IP 地址				
R1	G0/0/0.1	192. 168. 1. 254				
R1	G0/0/0.2	192. 168. 2. 254				
财务部 PC1	Eth0/0/1	192. 168. 1. 1				
技术部 PC1	Eth0/0/1	192. 168. 2. 1				

表2端口规划表

本端设备	本端接口	对端设备	对端接口
R1	G0/0/0	SW1	Eth0/0/1
SW1	E0/0/1	R1	G0/0/0

SW1	E0/0/2	财务部 PC	Eth0/0/1
SW1	E0/0/11	技术部 PC	Eth0/0/1

3. 项目实施

(1) 配置交换机接口

为各部门创建相应的 VLAN,将端口划分至相应 VLAN。

[Huawei]system-view
[Huawei]sysname SW1
[SW1]vlan batch 10 20
[SW1] port-group group-member Ethernet $0/0/2$ to Ethernet $0/0/10$
[SW1-port-group]port link-type access
[SW1-port-group]port default vlan 10
[SW1-port-group]quit
[SW1] port-group group-member Ethernet $0/0/11$ to Ethernet $0/0/20$
[SW1-port-group]port link-type access
[SW1-port-group]port default vlan 20
[SW1-port-group]quit
[SW1]interface Ethernet0/0/1
[SW1-Ethernet0/0/1]port link-type trunk
[SW1]interface Ethernet0/0/1
[SW1-Fthernet0/0/1] port trunk allow-pass vlan 10 20

(2) 路由器单臂路由的配置

在路由器以太网口上建立子接口,分别新建两个子接口,然后为两个子接口配置 IP 和 掩码,作为 vlan 的网关,同时启动 802.1Q。

<Huawei>system-view

[Huawei]sysname R1

[R1]interface GigabitEthernet 0/0/0.1

 $[R1-GigabitEthernet0/0/0.1] dot1q\ termination\ vid\ 10$

[R1-GigabitEthernet0/0/0.1]ip address 192.168.1.254 24

[R1-GigabitEthernet0/0/0.1]arp broadcast enable

[R1-GigabitEthernet0/0/0.1]quit

[R1] interface GigabitEthernet 0/0/0.2

[R1-GigabitEthernet0/0/0.2]dot1q termination vid 20

[R1-GigabitEthernet0/0/0.2]ip address 192.168.2.254 24

 $[R1-GigabitEthernet0/0/0.2] arp \ broadcast \ enable$

(3) 配置各计算机的 IP 地址

🗧 PC1	_	
基础配置命令	行 組織 UDP发包工具 串口	
主机名:	财务部PC1	
MAC 地址:	54-89-98-1D-5E-A9	
IPv4 配置		
 静态 	O DHCP □ 自动获取 DNS 服务器地址	
₽地址:	192 . 168 . 1 . 1 DNS1: 0 . 0 . 0 . 0	
子网掩码:	255 . 255 . 255 . 0 DNS2: 0 . 0 . 0 . 0	
网关:	192 . 168 . 1 . 254	
IPv6 配置		
● 静态	ODHCPV6	
IPv6 地址:	::	
前缀长度:	128	
IPv6 网关:	::	
		应用

图 2 财务部-PC1 IP 配置图

基础配置 命	论行 组播 UDP发包工	見 串口		
主机名:	技术部PC1			
MAC 地址:	54-89-98-68-62-88			
IPv4 配置				
● 静态	ODHCP	🗌 自动获	陬 DNS 服务器地址	
IP 地址:	192 . 168 . 2 . 1	DNS1:	0.0.0.0	
子网掩码:	255 . 255 . 255 . 0	DNS2:	0.0.0.0	
网关:	192 . 168 . 2 . 254			
IPv6 配置				
● 静态	O DHCPv6			
IPv6 地址:	::			
前缀长度:	128			
IPv6 网关:	::			

图 3 技术部-PC1 IP 配置图

4. 项目验证

(1) 验证路由器上路由表的配置信息

R1 使用 display ip interface brief 命令查看子接口 IP 信息

[R1]display ip interface brief

*down: administratively down

down: standby

(1): loopback			
(s): spoofing			
The number of interface that is U	P in Physical is 4		
The number of interface that is D	OWN in Physical is 2		
The number of interface that is U	P in Protocol is 3		
The number of interface that is D	OWN in Protocol is 3		
Interface	IP Address/Mask	Physical	Protocol
GigabitEthernet0/0/0	unassigned	up	down
GigabitEthernet0/0/0.1	192. 168. 1. 254/24	up	up
GigabitEthernet0/0/0.2	192. 168. 2. 254/24	up	up
GigabitEthernet0/0/1	unassigned	down	down
GigabitEthernet0/0/2	unassigned	down	down
NULLO	unassigned	up	up(s)

R1 使用 display ip routing-table 命令查看路由表的配置

[R1]display ip routing-table								
Route Flags: R - relay, D - download to fib								
Routing Tables: Pub	lic							
Destinations : 10			Routes :	10				
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface		
127. 0. 0. 0/8	Direct	0	0	D	127. 0. 0. 1	InLoopBack0		
127. 0. 0. 1/32	Direct	0	0	D	127. 0. 0. 1	InLoopBack0		
127. 255. 255. 255/32	Direct	0	0	D	127.0.0.1	InLoopBack0		
192.168.1.0/24	Direct	0	0	D	192.168.1.254	GigabitEthernet0/0/0.1		
192. 168. 1. 254/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/0.1		
192. 168. 1. 255/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/0.1		
192. 168. 2. 0/24	Direct	0	0	D	192. 168. 2. 254	GigabitEthernet0/0/0.2		
192. 168. 2. 254/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/0.2		
192. 168. 2. 255/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/0.2		
255. 255. 255. 255/32	Direct	0	0	D	127. 0. 0. 1	InLoopBack0		

(3) 测试各部门计算机的互通性

通过 Ping 命令,测试各部门内部通信息的情况。 使用财务部计算机 PC1 Ping 技术部的计算机 PC2:

PC>ping 192.168.2.1
Ping 192.168.2.1: 32 data bytes, Press Ctrl_C to break
From 192.168.2.1: bytes=32 seq=1 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=2 ttl=127 time=78 ms

```
From 192.168.2.1: bytes=32 seq=3 ttl=127 time=78 ms
From 192.168.2.1: bytes=32 seq=4 ttl=127 time=79 ms
From 192.168.2.1: bytes=32 seq=5 ttl=127 time=78 ms
--- 192.168.2.1 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 78/78/79 ms
```