

水分活度的测定

水分活度的测定

水分活度指物质中活性水部分或者自 由水。它主要影响物质物理、化学、微生 物特性. 其中包括流淌性、凝聚、内聚力 和静态等物理现象:食物保质期、颜色、 味道、维生素、成分、香味的稳定性:霉 菌的生成和微生物的生长特性都直接受物 质的水分活度值所影响。

水分活度的控制对产品的保质期

是非常重要的。比如说一块水分活度值为 0.81 的蛋糕,其保质期为 21° C 时 24 天, 如果其水分活度提高到 0.85 ,其保质期将 降低为 21° C 时 12 天。

水分含量与水分活度的关系:

食品的水分活度并不等同于其水分含量,例如金黄色葡萄球菌生在要求的最低水分活度为 0.86,但相当于这个水分活度的水分含量则随不同食品而异,如肉干为 23%, 乳粉为 16%,肉汁为 63%。 所以,按水分含量多少难以判断食品的保存性,只有测定和控制水分活度才对食品保藏性具有重要意义。

- //						
	食品	水分含量 %	水活度	食品	水分含量 %	水活度
	蔬菜	90 以上	0.99-0.98	蜂蜜	16	0.75
	水果	89-87	0.99-0.98	面包	35	0.93
	鱼贝类	85-70	0.99-0.98	香肠	65-56	0.90
	肉类	70 以上	0.98-0.97	小麦粉	14	0.61
	蛋	75	0.97	干燥谷类		0.61
	果汁	88—86	0.97	苏打饼干	5	0.53
	果酱		0.94-0.82	饼干	4	0.33
	果干	21-15	0.82-0.72	西式糕点	25	0.74
	果冻	18	0.69-0.60	香辛料		0.50
	糖果		0.65-0.57	虾干	23	0.64
	速溶咖啡		0.30	绿茶	4	0.26
	巧克力	1	0.32	脱脂奶粉	4	0.27
	葡萄糖	9-10	0.48	奶酪	40	0.96

水分活度的测定方法:

- 1. 平衡质量(水分)测定法——坐标插 入法(康维微量扩散法)。
- 2. 水分活度仪法。

仪器: 便携式水份活测定仪

、测量范围: 0.10-1.00aw

分辨率: ±0.01aw

精确度: ±0.02aw

性能简介:操作简便、快速, 5分钟显示结果。随时检测产品质量及现场生产控制。能连续测试样品的水分活度,精确度高,对一些水活特别低的样品亦可测量。

扩散法测定水分活度

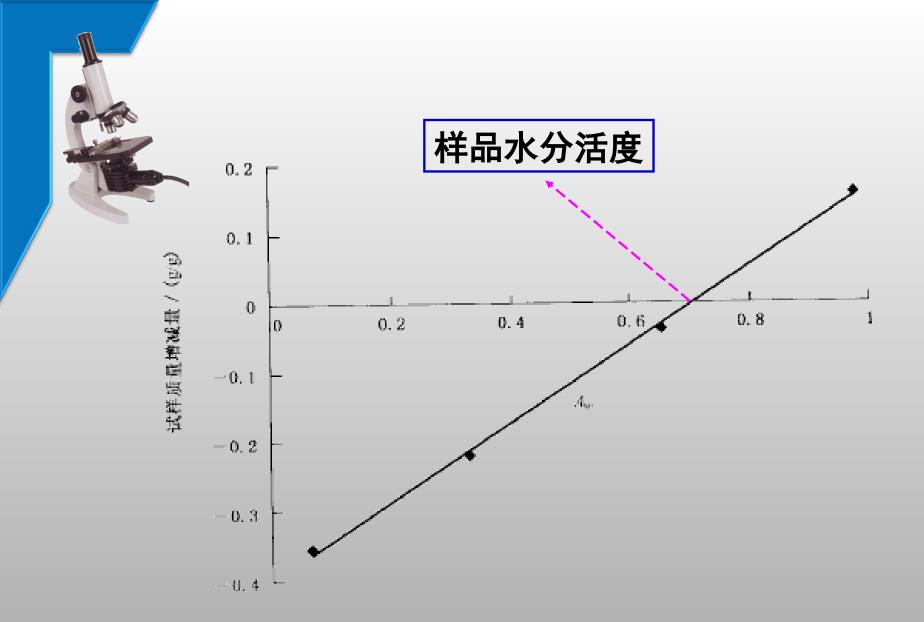
1. 原理:

食品中的水分都随环境条件的变动 而变化。当环境空气的相对湿度低于食品的 水分活度时,食品中的水分向空气中蒸发, 食品的质量减轻:相反当环境空气的相对湿 度高于食品的水分活度时,食品就会从空气 中吸收水分, 使质量增加。不管是蒸发水分 还是吸收水分, 最终是食品和环境的水分达 平衡时为止。

据此原理,采用标准水分活度的试 剂.形成相应湿度的空气环境,在康维微量 扩散皿的密封和恒温条件下,观察食品试样 在此空气环境中因水分变化而引起的质量变 化。通常使试样分别在 Aw 较高、中等和较 低的标准饱和盐溶液中扩散平衡后, 根据试 样质量的增加和减少的量, 计算试样的 Aw 值。

2. 仪器和试剂

- 2.1 仪器:分析天平;恒温箱;康维微量扩散皿;铝箔
- 2.2 试剂:碳酸钾、氯化钠、硫酸钾、氯化镁,凡士林


试剂	水活度	100 mL 水 中 的溶解度 /g	试剂	水活度	100 mL 水中 的溶解度 /g	
氯化 锂	0.110	102.5	硝酸钠	0.737	96.0	
醋酸 镁	0.224	44.8	氯化钠	0.752	36.3	
氯化 镁	0.330	230.8	溴化钾	0.807	70.6	
碳酸 钾	0.427	122.7	氯化钾	0.842	37.0	
硝酸						
锂	0.470	154.1	氯化钡	0.901	74.2	

3 实验步骤

~ (1)分别在4康维皿的外室预先放入标准饱和溶液5.0 mL(2种标准试剂水活度高于试样,2种标准试剂水活度低于试样)。并在磨口处涂一层凡士林。

(2)在预先准确称量过的铝箔中,准确称取约1.00g切碎样品,迅速放入康维皿的内室中,记下铝箔和样品的总重量。

- (3)在25 士 0.5℃ 的恒温箱中静置1h。取出铝箔及样品,迅速准确称量,并求出样品的重量。以后每隔30min称重一次上至恒重为止。
 - (4)以各种标准盐的饱和溶液在25℃ 时Aw值为横坐标,被测样品的增减重量 为纵坐标作图,并将各点连结成一条直线 。此线与横轴的交点即为所测样品的Aw

4、 注意事项

- (1)样品称重要迅速。
- (2) 康维皿密封性要好。
- (3)对试样的水分活度预先有一个估计,以便 正确选择饱和标准溶液。

- 1、扩散皿测定水分活度的原理是什么?
- · 2、为什么试验中含有水溶性挥发物质会 影响水分活度的准确测定?